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DETERMINATION OF THE THERMOPHYSICAL CHARACTERISTICS 

BY THE SELF-OSCILLATION METHOD 

V. P. Alekseev, S. E. Birkgan, Yu. N. Burtsev, 
A. S. Rudyi, and S. N. Shekhtman UDC 536.2 

A method is proposed for measuring the thermophysical characteristics by means of the 
self-oscillation frequency and the gain coefficient of the automatic regulation system 
containing the specimen under investigation. 

The phenomenon of exciting self-oscillatlons in automatic regulation systems is well 
known [i, 2]. For a regulator of low inertia the self-oscillation frequency depends only on 
the physical characteristics of the object of regulation. If material with unknown thermo- 
physical characteristics is taken as such an object, and a temperature stabilizer as regulator, 
then stable, almost sinusoidal, temperature oscillations can be obtained in the specimen under 
investigation. The frequency of these oscillations permits an assessment of the thermal 
diffusivity of the material. The heat conduction equation with nonlinear boundary conditions 
will be the mathematical model of this system. Similar equations with a weak nonlinearity 
are investigated by asymptotic methods. Thus, an algorithm to compute the self-oscillation 
in nonlinear parabolic systems with a small parameter [3] used in this paper was developed 
and given a foundation comparatively recently. Asymptotic methods are based on the fact that 
the desired periodic solution is bifurcated from the equilibrium state as the small parameter 
increases. Let us note that the bifurcation of periodic solutions can occur only in the case 
of a nonlinearity of a definite kind (soft excitation mode), the amplitude of the self- 
oscillations here diminishes together with the parameter. In the opposite case the amplitude 
of the periodic solutions does not decrease with the diminution of the parameter (hard exci- 
tation mode) and asymptotic methods are unsuitable. Although the self-oscillation frequency 
of a system with such kind of nonlinearity indeed contains information about the thermophysical 
characteristics of the material, it is not possible to extract it without relying on numerical 
methods. In other words, the presence of self-oscillations without making the kind of non- 
linearity specific cannot be used to determine the thermal diffusivity. UNfortunately, these 
well-known facts are not always taken into account [4]. Without delving into an analysis 
of the problem, the authors of the mentioned paper try to obtain a relationship between the 
frequency and the thermal diffusivity by assuming that the phase shift of the temperature 
oscillations in the specimen equals ~ and is 2~ in combination with the phase shift of the 
inverting amplifier signal. Overlooked here is that a phase shift also exists between the 
power liberated in the heater and its temperature by virtueof the integrating properties of 
the specimen~ Then the total phase shift in the system exceeds 2~ which contradicts the self- 
oscillation condition. This and other examples indicate the necessity of a complete analysis 
of such systems. 

Let us turn to a description of one of the possible methods of realizing the self- 
oscillation method, the construction of its mathematical model, and also the derivation of 
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formulas to calculate the heat conduction and thermal diffusivity. To organize the automatic 
regulation system, a specimen of material to be studied is set in contact with a heater and 
a heat sensor, which is connected to a temperature regulator, for instance, a differential 
amplifier. In this case the signal from the heat sensor is delivered to the amplifier invert- 
ing input while the output voltage goes to the heater. In a system obtained in such a manner, 
self-oscillations can be excited under definite conditions. The self-oscillation frequency 
depends only on the geometry and thermal diffusivity of the specimen, which permits a cal- 
culation of the thermal diffusivity coefficient in each specific case. 

As an illustration, we consider the case when the specimens are in the shape of plates 
(sketch). Let two specimens 1 being investigated, separated by a plane low-inertia heater 2, 
be placed between two thermostats 3. A thermocouple 4 is inserted within one of the specimens 
and its signals goes to the inverting input of the differential power amplifier 5 with a regu- 
latable gain coefficient. A reference voltage from:the source 6 is delivered to the second 
input. A voltage proportional to the difference between the input signals goes from the 
output of the amplifier 5 to the heater 2. The recorder 7 measures the specimen temperature 
and the self-oscillation frequency. 

The specimen, thermocouple, amplifier, and heater comprise an automatic regulation 
system described by the equations 

= aT", T~=o==O, 
(1)  

T~=6 -- ~ ,  [Uo-- aT (Xo, t)]~ [.0" a T  (Xo, t)]. 
2 ~ S R  

The system (i) has a stationary solution of the form 

Tst (x)= Uo (D~]/D~--~I)x ,  (2) 
a X o  

where 

XSR 
D = 1 -l-- 

.K2aUoXo 

It is evident that the Heaviside function in the second boundary condition of the system (i) 
should be positive in the stationary solution. The following condition hence results 

Uo [1-- (D_ ] / ~ - -  1)]>0, 

from which it follows that the sign in front of the radical should be negative. We linearize 
the nonlinear boundary-value problem (i) by the stationary solution (2). Consequently, we 
obtain a system of equations 

T (x, t) = aT" (x, t), T (x, t).=o=O, 
K2a (3) 

T(x, 1).=8- ).SR [Uo--aT t (xo)] T(Xo, t), 
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from whose form it follows that it has a periodic solution for certain gain coefficients 

T (x, t) = V (x) exp iot. (4) 

S u b s t i t u t i n g  t h e  f u n c t i o n  ( 4 )  i n t o  t h e  s y s t e m  ( 3 ) ,  we o b t a i n  a b o u n d a r y  v a l u e  p r o b l e m  t o  
d e t e r m i n e  V ( x ) :  

v" (x) = i~ v (x), v (x),=o=O, 
12 

V' (x)x=8= /(~= ~,SR [u~ tzTst (x~ V (Xo). 

(5) 

The solution of this problem has the form 

V(x) = Csh [k(l+ i)x], (6) 

where the wave number is k = -~ We find the spectrum of the wave numbers k by solving 

an eigennumber problem of the operator. Substituting (6) into the second boundary condition 

of (5), separating into real and imaginary parts, and introducing the notation v = k6, n = 

x06 -I and B .... K== [u0--=~t (x0)} , we obtain 
~SR 

. (oh v cos v -- s h v  sin v) = B shm,, cos nv,  
6 

(ch v cos v + sh ~, sin v) = Bch  t~v sin nv. 
6 

(7) 

Eliminating B in the expressions (7), we find a condition for the wave numbers k 

ch v cos v - -  sh v sin v ch v cosy  + sh ~; sin v ( 8 )  

sh nv cos n v  ch ~z v sin nv 

This equation has an infinite number of roots vj, j = 0, i ..... to each of which its value 
of the gain coefficient, determined from the system (7), corresponds. The least value of the 
gain for which the system (7) has a solution will be denoted by K 0. It follows from a linear 
analysis performed and from the results of [3] that the nonlinear system (I) has a periodic 
solution for K = K0 that bifurcates from the stationary solution. The frequency of the 
periodic solution can here be determined with any degree of accuracy from the formula 

n 

(~) = oo+ ~ dSj+ o (~"), (9) 
�9 i = I  

where ~0 is the self-oscillation frequency of the linear system (3) for K = K0; ~ = (K - K0)" 
K~x; and 6j are constants determined by the method in [3]. 

An investigation performed on the mathematical model permitted development of a measure- 
ment method and obtaining formulas to determine the heat conduction and thermal diffusivity 
coefficients. The measurements were executed according to the following scheme. By using the 
thermostats 3 (see sketch) an initial temperature was set up. Then the heater was switched in 
and by increasing the gain coefficient of the differential amplifier 5 excitation of tempera- 
ture oscillations in the specimen was achieved. As the gain coefficient increased, the gradient 
of the stationary temperature evidently rises but, as follows from (2), does not exceed the 
quantity u0(=x0) -I for any values of K. Consequently, the reference voltage is selected so 
that the temperature drop in the specimen would be 1.5-2~ for K = K0. After the occurrence of 
stable temperature oscillations, the gain coefficient is diminished so that the amplitude of 
the oscillations would be minimal but the amplifier drift and noise would not here exert sub- 
stantial influence on the mode of the oscillations, which should be almost sinusoidal. Then 
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by using the recorder 7 the self-oscillation frequency is measured, whereupon the number of 
oscillations is computed per time interval whose duration was determined by accuracy conside- 
rations. Since the thermocouple was placed at the center of the specimen in our experiments 
(i.e., n = 0.5, ~0 = 4,694,105) and the dependence ~(e) turned out to be quite weak, the for- 
mula a = 0.02269 m(g)62 was used to compute the thermal diffusi~ity. The heat-conduction 

coefficient was determined from the relationship 

Bo= ~ [ ~ t  (Xo)--Uo]. (10) 

It follows from (7) that 

Bo= --69,388-t (11) 

Substituting (ii) and (2) into (i0) yields 

~,:1,571.10_ 3 r Ko, or 
SR 

X - AUo6K~, 
(12) 

where A is the device constant determined experimentally. 

To verify the method, heat-conduction and thermal diffusivity measurements were performed 
on polymethylmetacrylate and polytetrafluorethylene according to the scheme described above. 
The measurements were executed on specimens in the shape of 20-mm-diameter discs. One speci- 
men was continuous and 4 mm thick, while a second consisted of two discs 2 mm thick each. 
Between the halves of the composite specimen was the junction of a differential thermocouple 
from foil also in the shape of a 20-mm disc 0.i mm thick. The second junction was on the 
thermostatted surface of the specimen. The problem of the experiment was to verify the 
adequacy of a real system of the problem considered above. Special attention was paid to 
the self-oscillation excitation mode, the dependence of their frequency on the gain coeffi- 
cient, the stability of the oscillations, and the influence of fluctuations, the accuracy of 
the measurement was not given decisive value here. 

Let us estimate the error in measuring the thermal diffusivity coefficient. Logarithmic 
differentiation of the expression 

[~ (~) -- fi (~)] ~ 
2v2o 

where 

/=1 

is the linearization error, yields the relative error in measuring the thermal diffusivity 

Aa Aco (e) AS (8) -6 2A8 2Avo (13) 
a r (~) - [~ (o + o ( ,)  - 1~ (o - - g - -  + vo 

Since no noticeable change in frequency was detected experimentally as e increased from zero 
until the appearance of nonlinear distortions for this kind of nonlinearity, the expression 
(13) can be represented in the form 

Aa A<o -6 2A6.-6 2Avo (14) 
- - "  ~ T ~  u 

The circular self-oscillation frequency was determined with 0.5% error by a simple measurement 
of the time of an integral number of oscillations. THe error in measuring the specimen thick- 
ness was 0.1% and the greatest contribution was a fraction of the last component in (13). 
Here Av0 is the indeterminacy of the root of the characteristic equation (8) due to the error 
in clamping the thermocouple Ax 0. The relation between them, determined from the condition 
that the total differentials of both sides of (8) are equal, has the form: 
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Av0 _ 2,072 Ax0 

Wo 

I n  o u r  e x p e r i m e n t s ,  t h e  q u a n t i t y  AXo was 1 . 5 " 1 0  -2 mm, AVo/V0 was 0.8%, and t h e  t o t a l  e r r o r  
s h o u l d  n o t  e x c e e d  1.5%. However ,  t h e  v a l u e s  o f  t h e  t h e r m a l  d i f f u s i v i t y  o b t a i n e d  a s  a r e s u l t  
of measuring standard specimens were 7% below specifications. The discrepancy between the 
computed and experimental errors is explained mainly by the nonuniformity of the heat flux 
in the specimens. Indeed, the ratio of specimen thickness to its radius was 0.4 while the 
ultimately allowable is considered 0.3. Furthermore, it was assumed that the thermocouple 
construction described above permits avoiding the influence of temperature fluctuations and 
makes the self-oscillations more stable. This assumption was confirmed but the thermocouple 
leads, from foil, just as was the thermocouple itself, resulted in additional heat losses. 
Nevertheless, the main purpose, an experimental verification of the operability of the method, 
was achieved. 

NOTATION 

T, temperature; a, thermal diffusivity coefficient; x, coordinate; w, specimen thickness; 
K, gain coefficient; g, heat-conduction coefficient; S, heater area; R, heater resistance; 
u^, reference voltage; a, thermal emf coefficient; x0, thermocouple coordinate; t, time; u 
a, Heaviside function; Tst, stationary temperature; V, spatial part of the periodic solution; C,~ 
a constant; v, real variable; n, ratio between the thermocouple coordinate'and the specimen 
thickness; vi, roots of the characteristic equation; K0, critical gain coefficient; ~, relative 
deviation of'the gain coefficient from the critical valu~ 6j, corrections to the frequency; : 
and o(e), a quantity with an order of smallness higher than e. 
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